Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Aminopyrimidine-carboxyl(ate) interactions in trimethoprim maleate, an antifolate drug

Ponraj Prabakaran, ${ }^{\text {a }} \boldsymbol{\dagger}$ Jebamony Justin Robert, ${ }^{\text {a }}$ Packianathan Thomas Muthiah, ${ }^{\mathbf{a} *}$ Gabriele Bocelli ${ }^{\mathbf{b}}$ and Lara Righi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, India, and ${ }^{\text {b }}$ CSSD-CNR, University of Parma, Viale delle Scienze, Parma 43100, Italy Correspondence e-mail: tomm@bdu.ernet.in

Received 28 September 2000
Accepted 3 January 2001

In the title cocrystal, trimethoprim maleate [2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidin-1-ium maleate], $\mathrm{C}_{14} \mathrm{H}_{19}-$ $\mathrm{N}_{4} \mathrm{O}_{3}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$, the trimethoprim molecule is protonated at N 1 . The carboxyl group of the maleate ion makes a specific double hydrogen bond of type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ with the 2 -amino group and the protonated N 1 atom of the trimethoprim cation which is similar to the carboxylate-trimethoprim cation interaction observed in the complex of dihydrofolate reductase with trimethoprim. The pyrimidine moieties of trimethoprim cations are centrosymmetrically paired through a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the 4 -amino group and the pyridinium N3 atom of a symmetry-related molecule. One of the O atoms at the maleate carboxylate group bridges the 2-amino and 4 -amino groups on either side of the paired trimethoprim cations. The other O atom of the carboxylate group forms an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the carboxyl group. These characteristic hydrogen bonds result in infinite two-dimensional aggregation of rings into a supramolecular ladder, which is further crosslinked through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions with methoxy groups of neighbouring trimethoprim molecules to form a layered structure.

Comment

Dihydrofolate reductase (DHFR) is an essential cellular enzyme as it is involved in several biosynthetic processes, as well as being the target for antifolate drugs such as trimethoprim (TMP). Drug-receptor complexes of DHFR from various sources with antifolate drugs have been widely studied and are of current interest (Feeney, 2000). TMP is very effective as it has differential affinity for bacterial DHFR

[^0]versus human DHFR. The drug in its N1-protonated form inhibits DHFR. The crystal structures of trimethoprim and its complexes, for example, trimethoprim (Koetzle \& Williams, 1976), trimethoprim monobenzoate (Giuseppetti et al., 1984), trimethoprim monobenzoate-benzoic acid 1:1 complex (Bettinetti et al., 1985), trimethoprim acetate (Bryan et al., 1987), trimethoprim sulfametrole (Giuseppetti et al., 1994), and trimethoprim sulfadimidine 1:1 (Bettinetti \& Sardone, 1997) and 1:2 (Sardone et al., 1997) complexes have been reported in the literature. The crystal structures of maleic acid complexed with L-histidine and L-lysine (Pratap et al., 2000), and with DL- and L-arginine (Ravishankar et al., 1998) have been studied recently for their aggregation modes and interaction patterns from the hydrogen bonding point of view. As part of structural investigations on drugs and their complexes carried out in our laboratory, we have already determined the structures of trimethoprim formate (Umadevi \& Muthiah, 1994), trimethoprim perchlorate (Umadevi \& Muthiah, 2001), trimethoprim salicylate monohydrate (Murugesan \& Muthiah, 1996) and trimethoprim nitrate (Murugesan \& Muthiah, 1997). The present study has been aimed at understanding the conformation, hydrogen bonding and specificity of trimetho-prim-carboxyl(ate) interactions in trimethoprim maleate, (I).

The TMP molecule is protonated at N 1 , as is evident from the increase in the ring angle at N 1 from $115.46(5)^{\circ}$ in neutral trimethoprim to 121.5 (4) ${ }^{\circ}$ in the present work. The conformation of the TMP molecule is described by two torsion angles, i.e. $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C}^{\prime}$ of $-70.0(5)^{\circ}$ and $\mathrm{C} 5-\mathrm{C} 7-$ $\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}$ of $144.2(4)^{\circ}$. The pyrimidine ring makes a dihedral angle of $93.2(1)^{\circ}$ with the phenyl ring, which is close to the value of $93.8(1)^{\circ}$ observed for trimethoprim nitrate (Murugesan \& Muthiah, 1997). An ORTEPII (Johnson, 1976) diagram of the molecule with the atom-labelling scheme is shown in Fig. 1.

The drug TMP in its protonated form interacts with the carboxyl and carboxylate moieties of maleate ions. The carboxyl-group hydrogen bonding in protein structures has also been well established (Ramanadham et al., 1993). The carboxyl group of the maleate ion makes a specific double hydrogen bond of type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ with the 2-amino group and the protonated N 1 atom of the TMP cation which is similar to the carboxylate-trimethoprim cation interaction observed in DHFR-TMP complexes (Kuyper, 1990). The least-squares planes passing through the carboxylate group and the pyrimidine ring involved in the specific hydrogen-bond interaction make an angle of $17.3(6)^{\circ}$. The pyrimidine moieties of trimethoprim cations are centrosymmetrically paired through a couple of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the 4 -amino

Figure 1
ORTEPII (Johnson, 1976) diagram of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
which is embedded by two O mediated hydrogen-bonded rings of graph-set $R_{3}^{2}(8)$. The characteristic hydrogen-bonded rings observed in the structure aggregate into a supramolecular ladder consisting of a pair of chains, each of which is built up of alternate TMP and maleate ions (Fig. 2). As can be seen in Fig. 2, two maleate ions are interconnected by paired TMP molecules and vice versa. The ladders are further crosslinked through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions with methoxy groups of neighbouring TMP molecules to form a layered structure. The geometrical parameters of the hydrogen-bond interactions are given in Table 2.
group and the N 3 atom. The specific double hydrogen bonds between the TMP and maleate ions, as well as two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in the paired pyrimidine moieties, form eightmembered hydrogen-bonded rings with a graph-set motif of $R_{2}^{2}(8)$ (Etter, 1990; Bernstein et al., 1995). One of the O atoms (O7) at the carboxylate group of the maleate ions bridges the 2-amino and 4-amino groups on either side of the paired TMP cations, forming hydrogen-bonded ring motifs with graph-set $R_{3}^{2}(8)$. The other O atom (O6) of the carboxylate group of the maleate ion forms an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the O 4 atom of the carboxyl group.

The hydrogen-bonding patterns formed upon the association of aminopyrimidine moieties of TMP molecules via selfpairing and carboxylate bridging resemble those of watermediated $G G$ pairing observed in the crystal structure of guanine hydrochloride dihydrate in the $G G_{4}^{2}$ mode (Jeffrey \& Saenger, 1991). Both structures have a direct base-pairing through two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds with an $R_{2}^{2}(8)$ motif,

Figure 2
Hydrogen-bonded supramolecular ladder containing alternate TMP and maleate ions.

Experimental

Trimethoprim (obtained as a gift from Shilpa Antibiotics Ltd) and maleic acid in a 1:1 ratio were dissolved in warm water and crystallized from the mother liquor.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} . \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$
$M_{r}=406.40$
Monoclinic, $P 2_{1} / n$
$a=28.485$ (2) A
$b=12.964$ (3) \AA
$c=5.413$ (2) \AA
$\beta=93.27$ (3) ${ }^{\circ}$
$V=1995.7(9) \AA^{3}$
$Z=4$
$D_{x}=1.353 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 40 reflections
$\theta=6.82-21.34^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, pale yellow
$0.31 \times 0.26 \times 0.17 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.757, T_{\text {max }}=0.863$
4200 measured reflections
3796 independent reflections
1522 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.065$
$w R\left(F^{2}\right)=0.257$
$S=0.911$
3796 reflections
278 parameters
H -atom refinement: see below
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=69.96^{\circ}$
$h=-10 \rightarrow 34$
$k=-14 \rightarrow 15$
$l=-6 \rightarrow 6$
3 standard reflections frequency: 60 min intensity decay: negligible

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1407 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.28 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0017 (5)

The hydroxy H4 atom (bonded to O4) was refined isotropically. All other H atoms were treated as riding, with $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ distances of 0.86 and $0.93-0.97 \AA$, respectively.

Table 1
Selected geometric parameters (\AA).

$\mathrm{O}_{1}-\mathrm{C} 3^{\prime}$	$1.373(6)$	$\mathrm{O} 6-\mathrm{C} 14$	$1.295(7)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.432(7)$	$\mathrm{O} 7-\mathrm{C} 14$	$1.217(7)$
$\mathrm{O} 2-4^{\prime}$	$1.389(6)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.356(6)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.401(6)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.340(6)$
$\mathrm{O} 3-\mathrm{C} 5^{\prime}$	$1.366(6)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.309(6)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.409(7)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.352(6)$
$\mathrm{O} 4-\mathrm{C} 11$	$1.276(7)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.355(5)$
$\mathrm{O} 5-\mathrm{C} 11$	$1.244(6)$	$\mathrm{N} 4-\mathrm{C} 4$	$1.326(6)$

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 5$	0.86	1.90	$2.747(6)$	168
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 4$	0.86	2.13	$2.936(6)$	155
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 7^{\mathrm{i}}$	0.86	2.20	$3.041(6)$	166
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 6$	$1.06(6)$	$1.36(6)$	$2.423(6)$	$174(6)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 3$				
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\text {iii }}$	0.86	2.13	$2.985(5)$	172
$\mathrm{C} 10-\mathrm{H} 10 C \cdots \mathrm{O} 1^{\text {iv }}$	0.859	2.14	$2.829(6)$	137
Symmetry codes: (i) $-x,-1-y, 2-z ;$	0.96	2.59	$3.355(8)$	137
$\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.				

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1997); software used to prepare material for publication: PLATON.

We thank the University Grants Commission, Government of India, for a Project Assistantship (PP) and a Career award (PTM). PP also acknowledges the ICTP-TRIL (reference 5512 CNR 96 NIH8) for a short-term research fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1113). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bettinetti, G. \& Sardone, N. (1997). Acta Cryst. C53, 594-597.
Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. \& Tadini, C. (1985). Acta Cryst. C41, 1249-1253.

Bryan, R. F., Haltiwanger, R. C. \& Woode, M. K. (1987). Acta Cryst. C43, 2412-2415.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Feeney, J. (2000). Angew. Chem. Int. Ed. Engl. 39, 291-312.
Giuseppetti, G., Tadini, C. \& Bettinetti, G. P. (1994). Acta Cryst. C50, 12891291.

Giuseppetti, G., Tadini, C., Bettinetti, G. P., Giordano, F. \& La Manna, A. (1984). Acta Cryst. C40, 650-653.

Jeffrey, G. A. \& Saenger, W. (1991). An Introduction to Hydrogen Bonding, pp. 245-250. Berlin: Springer Verlag.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Koetzle, T. F. \& Williams, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074-2078.
Kuyper, L. F. (1990). Crystallographic and Modeling Methods in Molecular Designs, edited by C. E. Bugg \& S. E. Ealick, pp. 56-79. New York: Springer Verlag.
Murugesan, S. \& Muthiah, P. T. (1996). Academy Discussion Meeting on Frontiers in Structural Chemistry, IIT, Chennai, India. Abstract No. 3.4.
Murugesan, S. \& Muthiah, P. T. (1997). Acta Cryst. C53, 763-764.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pratap, J. V., Ravishankar, R. \& Vijayan, M. (2000). Acta Cryst. B56, 690-696.
Ramanadham, M., Jakkal, V. S. \& Chidambaram, R. (1993). FEBS Lett. 323, 203-206.
Ravishankar, R., Chandra, N. R. \& Vijayan, M. (1998). J. Biomol. Struct. Dyn. 15, 1093-1100.
Sardone, N., Bettinetti, G. \& Sorrenti, M. (1997). Acta Cryst. C53, 1295-1299.
Sheldrick, G. M. (1997). SHELXS 97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON. Utrecht University, The Netherlands.
Umadevi, B. \& Muthiah, P. T. (1994). 4th Eurasia Conference on Chemical Sciences, Kuala Lumpur, Malaysia. Abstracts, p. 74.
Umadevi, B. \& Muthiah, P. T. (2001). In preparation.

[^0]: \dagger Present address: RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.

